Abstract

Carbon/polymerized cyclic butylene terephthalate (pCBT) composites were prepared through a modified film stacking technique. Three crystalline morphologies of carbon/pCBT composites were obtained at different crystallization temperatures. Tensile, flexural, short beam shear and impact tests were conducted. The low crystallinity carbon/pCBT sam- ples were crystallized at 185°C with spherulitic structure which leads to form the large area spherulite/transcrystalline boundary regions. Consequently, the crack initiated and propagated along with 'weak' spherulite/transcrystalline boundary regions, which were resulted low mechanical properties. Carbon/pCBT sample crystallized at 210°C with high crystallinity and highly disordered spherulitic crystallites without spherulite/transcrystalline boundary lines or boundary crystals exhibits the highest mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.