Abstract

Poly(vinyl alcohol) (PVA), a synthetic, nontoxic polymer, is widely studied for use as a biomedical hydrogel due to its structural and physicomechanical properties. Depending on the synthesis method, PVA hydrogels can exhibit a range of selected characteristics-strength, creep resistance, energy dissipation, degree of crystallinity, and porosity. While the structural integrity and behavior of the hydrogel can be fine-tuned, common processing techniques result in a brittle, linear elastic material. In addition, PVA lacks functionality to engage and participate in cell adhesion, which can be a limitation for integrating PVA materials with tissue in situ. Thus, there is a need to further engineer PVA hydrogels to optimize its physicomechanical properties while enhancing cell adhesion and bioactivity. While the inclusion of gelatin into PVA hydrogels has been shown to impart cell-adhesive properties, the optimization of the mechanical properties of PVA-gelatin blends has not been studied in the context of traditional PVA hydrogel processing techniques. The incorporation of poly(ethylene glycol) with PVA prior to solidification forms an organized, cell instructive hydrogel with improved stiffness. The effect of cryo-processing, i.e., freeze-thaw (FT) cycling was elucidated by comparing 1 FT and 8 FT theta-cryo-gels and cryo-gels. To confirm the viability of the gels, human mesenchymal stem cell (hMSC) protein and sulfated glycosaminoglycan assays were performed to verify the nontoxicity and influence on hMSC differentiation. We have devised an elastic PVA-gelatin hydrogel utilizing the theta-gel and cryo-gel processing techniques, resulting in a stronger, more elastic material with greater potential as a scaffold for complex tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.