Abstract

Assisted sperm morphometry analysis (ASMA) was used in this study to determine the effects of cryopreservation on bull spermatozoa distribution in morphometrically distinct subpopulations. Ejaculates were collected from five bulls and were divided. One portion was diluted at 30 degrees C in a skim milk-egg yolk medium, containing glycerol. A microscope slide was prepared from single extended sperm samples prior to freezing. The remainder of each sample was frozen in nitrogen vapours. After thawing, sperm smears were prepared as described above. All slides were air dried and stained with Hemacolor. The sperm-head dimensions for a minimum of 200 sperm heads were analysed from each sample by means of the Sperm-Class Analyser (SCA), and the mean measurements recorded. Our results showed that applying the ASMA technology and multivariate cluster analyses, it was possible to determine that three separate subpopulations of spermatozoa with different morphometric characteristics coexist in bull ejaculates (large, average and small spermatozoa). The mean values of each sperm head dimension among the three subpopulations of spermatozoa were significantly different (p < 0.001). Besides, there were significant (p < 0.001) differences in the distribution of these three sperm subpopulations between fresh and thawed samples. Thus, the percentage of representation of the subpopulation that includes those spermatozoa whose dimensions are the biggest, decreased from 52.06% in extended fresh samples to 15.51% in the thawed ones. Contrarily, the percent of representation of the subpopulation containing the smallest spermatozoa, increased from 8.70% in extended fresh samples to 34.04% in the thawed ones. In conclusion, the present study confirms the heterogeneity of sperm head dimensions in bull semen, heterogeneity that vary through the cryopreservation procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.