Abstract

AbstractIn this work, the influence of a cryogenic treatment on the microstructure, mechanical properties and wear resistance of the high-alloyed tool steels X38CrMoV5-3, X153CrMoV12 and ~X190CrVMo20-4 were investigated. Based on tempering curves of the steels, the heat treatment parameters were determined for the mechanical and wear specimens so that the conventionally heat-treated steels and the cryogenically treated steels featured similar hardness. The investigations showed that an almost complete transformation of retained austenite and a more homogeneous distribution of secondary carbides in the microstructure could be achieved by incorporating a cryogenic treatment. However, the cryogenic treatment does not show significantly positive effects on the investigated mechanical properties and wear resistance of the tool steels. The wear resistance of the samples was dominated by primary carbides. The cryogenic treatment would have a positive effect on large tool components with large wall thicknesses in terms of uniform and complete transformation of retained austenite throughout the entire components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call