Abstract

In this paper, we report the results of radio propagation characterisation in a pedestrian tunnel with different crowd densities at 24 GHz using commercial ray-tracing software called Wireless InSite. The 3D empty tunnel and human body models we created using computer-aided design software and imported into Wireless InSite. The tunnel model is based on a pedestrian tunnel connecting Suria and KLCC, which is located in the heart of Kuala Lumpur. Five three-dimensional (3D) human body models with different levels of detail were developed and tested. The crowd densities investigated were 0, 0.05, 0.1, 0.15 and 0.2 people/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> which correspond to 0, 25, 50, 75, and 100 people, respectively, in the study area. The results show that the path loss exponent, log-normal shadowing’s standard deviation, and fluctuation in received power increase as the number of people increases. When the crowd density is above 0.1 people/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , the path loss exponent of the large-scale path loss model is higher than that of the empty tunnel. The results of this study are also useful for understanding the effects of human crowds on millimetre wave propagation in indoor tunnel-like environments such as hallways, enclosed corridors, mines, and transportation tunnels. The findings contribute to increasing the effectiveness of network planning and deployment for 5G communication, especially in pedestrian tunnels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.