Abstract

Cross correlations between components of a mixture of one-dimensional (1D) and three-dimensional (3D) inhomogeneities are described by introducing a distribution function taking into account correlations between absolute values of two random variables in the absence of correlations between the variables themselves. This distribution function is used for derivation and analysis of the superlattice correlation function containing a mixture of cross-correlated 1D and 3D inhomogeneities. The effect of such inhomogeneities on the high-frequency susceptibility at the edge of the first Brillouin zone of the superlattice is investigated. It is shown that positive cross correlations partly suppress the effect of a mixture of 1D and 3D inhomogeneities on the wave spectrum: the gap at the boundary of the Brillouin zone increases, and wave damping decreases as compared to the effect produced by a mixture of 1D and 3D inhomogeneities in the absence of cross correlations. Negative cross correlations lead to the opposite effect: the gap decreases and wave damping increases. Cross correlations also lead to the emergence of new resonance effects: a narrow dip or a narrow peak at the center of the band gap (depending on the sign of the correlation factor).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call