Abstract
In this paper, a two-dimensional integrated numerical model is developed to examine the influences of cross-anisotropic soil behaviour on the wave-induced residual liquefaction in the vicinity of a pipeline buried in a porous seabed. In the wave model, the RANS (Reynolds Averaged Navier–Stokes) equation is used to govern the wave motion. In the seabed model, the residual soil response in the vicinity of an embedded pipeline is considered with the 2-D elasto-plastic solution, where the phase-resolved shear stress is used as a source for the build-up of residual pore pressure. Classical Biot׳s consolidation equation is used for linking the solid-pore fluid interaction. The validation of the proposed integrated numerical model is conducted by the comparisons with the previous experimental data. Numerical examples show that the pore pressures can accumulate to a large value, thus resulting in a larger area of liquefaction potential in the given anisotropic soil compared to that with isotropic solution. The influences of anisotropic parameters on the wave-induced residual soil response in the vicinity of pipeline are significant. A high rate of pore pressure accumulation and dissipation is observed and the liquefaction potential develops faster as the anisotropic parameters increase. Finally, a simplified approximation based on a detailed parametric investigations is proposed for the evaluation of maximum liquefaction depth (zL) in engineering application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.