Abstract

Improper cropping and overgrazing have led to land degradation in semi-arid regions, resulting in desertification. During desertification, vegetation changes have been widely observed, and are likely controlled to some extent by soil water. The purpose of this study was to investigate changes in soil physical properties, organic C, and vegetation induced by land-use changes, with special reference to the dynamics of available soil water. We selected four study sites in a typical Mongolian steppe grassland: grassland protected from grazing, grazed grassland, abandoned cropland, and cultivated cropland. Grazing exclusion increased the cover of perennial grass, with little increase in the root weight. Since there was no difference in available water between the grasslands with and without grazing, there appears to be no serious soil compaction due to overgrazing. On the other hand, vegetation cover and the number of species were poor in both abandoned cropland and cultivated cropland. However, the root weight was greater in abandoned cropland. Although the abandonment of cultivation appeared to increase organic C, available water did not differ significantly in comparison with cultivated cropland. The silt contents were significantly lower in abandoned and cultivated cropland than in both grasslands, suggesting the effects of wind erosion. In addition, the silt contents were positively correlated with the volume fraction of storage pores for available water. Therefore, the lower silt contents may constrain the volume of available water in abandoned cropland. Moreover, the unsaturated hydraulic conductivity results indicated that the diameters of storage pores for available water at the present study sites were smaller than those suggested by previous studies. Although the differences in vegetation cover by different land-use types were observed at every site, differences in the volume of available water were observed at between abandoned cropland and cultivated cropland. The reason why the no differences in available water between grazed grassland and grasslands protected from grazing may be short time of grazing exclusion for 2 years for evaluating the effects of exclusion on soil properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.