Abstract

We report on a study of the superconducting order parameter thermodynamic fluctuations in YBa_{2}Cu_{3}O_{7-δ},Bi_{2}Sr_{2}CaCu_{2}O_{8+δ}, and KOs_{2}O_{6} compounds. A nonperturbative technique within the framework of the renormalized Gaussian approach is proposed. The essential features are reported (analytically and numerically) through Ginzburg-Landau (GL) model-based calculations which take into account both the dimension and the microscopic parameters of the system. By presenting a self-consistent approach improvement on the GL theory, a technique for obtaining corrections to the asymptotic critical behavior in terms of nonuniversal parameters is developed. Therefore, corrections to the specific heat and the critical transition temperature for one-, two-, and three-dimensional samples are found taking into account the fact that fluctuations occur at all length scales as the critical point of a system is approached. The GL model in the free-field approximation and the 3D-XY model are suitable for describing the weak and strong fluctuation regimes respectively. However, with a modified quadratic coefficient, the renormalized GL model is able to explain certain experimental observations including the specific heat of complicated systems, such as the cup-rate superconductors and the β-pyrochlore oxides. It is clearly shown that the enhancement, suppression, or rounding of the specific heat jump of high-T_{c} cup-rate superconductors at the transition are indicative of the order parameter thermodynamic fluctuations according to the dimension and the nature of interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call