Abstract
In the present study, a powder injection molding (PIM) product containing (Cr,Fe)2B borides was fabricated with Fe-based alloy powders, and its microstructure and hardness were investigated in relation with volume fraction of (Cr,Fe)2B. In the Fe-based alloys designed by the thermodynamic calculation, the volume fractions of (Cr,Fe)2B increased with increasing (XCr+XB) value, and were well matched with those obtained from the thermodynamic calculation. The hardness of the Fe-based alloys linearly increased with increasing volume fraction of (Cr,Fe)2B. When Fe-based alloy powders were injection-molded and sintered at 1165°C, a densified microstructure with almost no pores was obtained. In the sintered microstructure, 56vol% of (Cr,Fe)2B borides, together with a few pores (porosity; 0.5%), were relatively homogeneously distributed in the tempered martensite matrix, which resulted in the very high hardness over 600 VHN. Such a high hardness suggested that the present Fe-based alloy powders could be readily adopted for fabricating PIM products or for replacing conventional stainless steel PIM products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.