Abstract

The near-threshold fatigue behavior of small, semi-elliptical surface cracks in a bearing steel was investigated under cyclic shear-mode loading in ambient air. Fully-reversed cyclic torsion was combined with a static axial compressive stress to obtain a stable shear-mode crack growth in the longitudinal direction of cylindrical specimens. Shear stress amplitude was gradually decreased with an increase in crack length and the crack finally became non-propagating. Abrasive wear on the crack faces was inferred by debris and also by changes in microstructure in the wake of crack tip. Further, it was found that these effects resulted in a significant decrease in the crack growth rate. In this study, we shed light on the important role of the crack size and crack face interference on the crack growth behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.