Abstract

The effects of Cr and Fe addition on the mechanical properties of Ti–6Al–4V alloys prepared by direct energy deposition were investigated. As the Cr and Fe concentrations were increased from 0 to 2 mass%, the tensile strength increased because of the fine-grained equiaxed prior β phase and martensite. An excellent combination of strength and ductility was obtained in these alloys. When the Cr and Fe concentrations were increased to 4 mass%, extremely fine-grained martensitic structures with poor ductility were obtained. In addition, Fe-added Ti–6Al–4V resulted in a partially melted Ti–6Al–4V powder because of the large difference between the melting temperatures of the Fe eutectic phase (Ti–33Fe) and the Ti–6Al–4V powder, which induced the formation of a thick liquid layer surrounding Ti–6Al–4V. The ductility of Fe-added Ti–6Al–4V was thus poorer than that of Cr-added Ti–6Al–4V.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call