Abstract

An analytical approach is used to investigate the effects of covering layer thickness on the propagation behavior of Love waves in functionally graded piezoelectric materials (FGPMs) covered with a dielectric layer. The piezoelectric substrate is polarized in the direction perpendicular to the wave propagation plane, and its material parameters change continuously along the thickness direction. The dispersion equations for the existence of Love waves with respect to phase velocity are obtained for electrically open and shorted cases, respectively. A detailed investigation of the effects of the covering dielectric layer thickness on dispersion curve, phase velocity, group velocity, and electromechanical coupling factor is carried out. Numerical results show that for a given FGPM, the covering dielectric layer thickness affects significantly the fundamental mode of Love waves but has only negligible effects on the high-order modes. The changes in phase velocity, group velocity, and electromechanical coupling factor due to the change of gradient coefficient of FGPMs could be approached approximately by changing the thickness of the covering dielectric layer, which imply a potential factor for designing new-type surface wave devices with FGPMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call