Abstract

The broad application of graphene is impeded by its intrinsically insoluble property. Therefore, two types of water dispersible graphene were synthesized by the reaction of graphene oxide (GO) with sodium 4-aminoazobenzene-4′-sulfonate (SAS) and its aryl diazonium salt (ADS). The maximum dispersibilities of SAS- and ADS-functionalized graphene (SAS-G and ADS-G) in water were 1.4 and 2.9mgmL−1, respectively. Fourier transform infrared, Raman and X-ray photoelectron spectroscopy (XPS) revealed successful surface modification of graphene using SAS and ADS. The electrical conductivity of ADS-G (1120Sm−1) was much greater than SAS-G (149Sm−1), which is attributed to two-step reduction of GO to graphene. Thermogravimetric analysis revealed that excess surface modifier was attached to the surface of the ADS-G compared to SAS-G, which corroborates the Raman and XPS analysis. The electrochemical properties of the formed SAS-G and ADS-G were investigated, and the results demonstrated that ADS-G showed better specific capacitance (210Fg−1) than SAS-G (170Fg−1). All these observations confirmed that the surface modified graphene can be used as energy storage electrode materials because of their high specific capacitance values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.