Abstract
Multistability is a phenomenon in which a dynamical system possesses multiple attractors within the same set of parameters. This study explores the effects of coupling on the dynamics of a recently introduced 2D single-neuron neural network model. The system is in its original form bistable, but its extension to include fractional-order derivatives yields an unprecedented level of complexity that is characterized by extreme multistability. We provide a comprehensive analysis of the behavior of this system when coupled. We find a diverse range of attractors for two coupled systems emerging from different initial conditions, and we elucidate the transition from periodic to chaotic behavior as the coupling strength increases. We also show that the synchronization dynamics in this case ranges from anti-phase synchronization under weak coupling to complete synchronization under stronger coupling. Finally, we study the collective behavior of several coupled extremely multistable fractional-order systems, which compared to bistable systems exhibit more complexity and uncertainty as they oscillate between different attractors, or even between emerging attractors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.