Abstract

Molecular dynamics simulations are used to assess the influence of Coulomb coupling on the energy evolution of charged projectiles in the classical one-component plasma. The average projectile kinetic energy is found to decrease linearly with time when να/ωp ≲ 10−2, where να is the Coulomb collision frequency between the projectile and the medium, and ωp is the plasma frequency. Stopping power is obtained from the slope of this curve. In comparison to the weakly coupled limit, strong Coulomb coupling causes the magnitude of the dimensionless stopping power, (a/kBT)dE/dx, to increase, the Bragg peak to shift to several times the plasma thermal speed, and for the stopping power curve to broaden substantially. The rate of change of the total projectile kinetic energy averaged over many independent simulations is shown to consist of two measurable components: a component associated with a one-dimensional friction force and a thermal energy exchange rate. In the limit of a slow and massive projectile, these can be related to the macroscopic transport rates of self-diffusion and temperature relaxation in the plasma. Simulation results are compared with available theoretical models for stopping power, self-diffusion, and temperature relaxation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.