Abstract

The conformational collapse of polymers in mixtures of two individually good solvents is an intriguing yet puzzling phenomenon termed cononsolvency. In this paper, the concept of the preferential adsorption of the cosolvent is combined with mean-field approaches to elaborate the cononsolvency effect of dimethylformamide (DMF) on the thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) microgels in aqueous solutions. We give a quantitative description concerning the effects of DMF preferential adsorption and partitioning on the reentrant transition of PNIPAM microgels below the lower critical solution temperature (LCST) of PNIPAM. While the DMF cononsolvency incurs the conformational collapse, the affinity of DMF molecules to PNIPAM chains becomes increasingly stronger, which reveals that the conformational collapse is decoupled from the solvent quality of DMF-water mixtures. Considering the chain elasticity, spatial constraints, and surface charge of microgels, we explore the cononsolvency effect on the persistence length quantifying the PNIPAM flexibility. Our analysis elucidates that, depending on chain length and temperature, the DMF cononsolvency-induced collapse of PNIPAM microgels leads to a remarkable increase in the persistent length below LCST, which is comparable to the experimental data regarding suspension mechanical properties of PNIPAM microgels in water above LCST.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call