Abstract

Adult neuroplasticity is strongly influenced by steroids. In particular, corticosterone (CORT) and dehydroepiandrosterone (DHEA) can have opposing effects, where CORT reduces while DHEA increases neurogenesis and neuron recruitment. It has been previously shown that in adult male song sparrows, DHEA treatment increases neuron recruitment throughout the telencephalon, including the lateral ventricular zone, while the effect of CORT treatment is restricted to HVC, one of the song control regions. These data suggest that the two steroids may differentially affect proliferation, migration, differentiation, and/or survival of new neurons. To determine if CORT or DHEA alters the migration and differentiation of young neurons, we examined an endogenous marker of migrating immature neurons, doublecortin (DCX), in HVC and hippocampus of adult male song sparrows that were treated with CORT and/or DHEA for 28 days. In HVC, DHEA increased the number of DCX-labeled round cells, while CORT had no main effect on the number of DCX-labeled cells. Furthermore, DHEA increased the area covered by DCX immunoreactivity in HVC, regardless of CORT treatment. In the hippocampus, neither DHEA nor CORT affected DCX immunoreactivity. These results suggest that DHEA enhances migration and differentiation of young neurons into HVC while CORT does not affect the process, whether in the presence of DHEA or not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.