Abstract

This paper presents a detailed experimental investigation of the influence of core flow swirl on the mixing and performance of a scaled turbofan mixer with 12 scalloped lobes. Measurements were made downstream of the mixer in a co-annular wind tunnel. The core-to-bypass velocity ratio was set to 2:1, temperature ratio to 1.0, and pressure ratio to 1.03, giving a Reynolds number of 5.2 × 105, based on the core flow velocity and equivalent hydraulic diameter. In the core flow, the background turbulence intensity was raised to 5% and the swirl angle was varied using five vane geometries from 0° to 30°. Seven-hole pressure probe measurements and surface oil flow visualization were used to describe the flowfield and the mixer performance. At low swirl angles, additional streamwise vortices were generated by the deformation of normal vortices due to the scalloped lobes. With increased core swirl, greater than 10°, the additional streamwise vortices were generated mainly due to radial velocity deflection, rather than stretching and deformation of normal vortices. At high swirl angles, stronger streamwise vortices and rapid interaction between various vortices promoted downstream mixing. Mixing was enhanced with minimal or no total pressure and thrust losses for the inlet swirl angles less than 10°. However, the reversed flow downstream of the center-body was a dominant contributor to the loss of thrust at the maximum core flow swirl angle of 30°.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.