Abstract
As-annealed Fe–1.5 wt%Cu alloys were deformed by cold rolling. Positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectra (DBS) were used to analyze the microdefects in the alloy induced by deformation. Cu precipitates were formed uniformly in the alloy after annealing at 1173 K. To investigate the effects of Cu precipitates on the formation and migration of defects, well-annealed pure Fe samples were prepared as a reference. PALS results show that the value of positron lifetime (both long lifetime τ2 and mean lifetime τm) in the alloy is smaller than in pure Fe during deformation. This indicates that Cu precipitates restrain the growth of vacancy clusters. Results of DBS show that the S parameter in pure Fe is larger than in the alloy, and more deformation is needed for the S parameter to be saturated in the alloy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.