Abstract

Copper oxide nanoparticles (CuO NPs) were regarded as the versatile materials in daily life and the in-depth evaluation of their biological effects is of great concern. Herein the female and male zebrafishes were chosen as the model animals to analyze the reproductive toxicity caused by CuO NPs at low concentration (10, 50 and 100 μg/L) After 20-days exposure, the structure of zebrafish ovary and testis were impaired. Moreover, the contents of 17β-estradiol (E2) in both females and males were increased, while the contents of testosterone (T) were decreased, indicating the imbalanced sex hormones caused by CuO NPs. The expression of genes along the hypothalamic pituitary-gonad (HPG) axis, were examined with quantitative real-time PCR to further evaluate the toxic mechanisms. Meanwhile, the levels of erα/er2β and cyp19a in female zebrafishes and erα/er2β, lhr, hmgra/hmgrb, 3βhsd and 17βhsd in male zebrafishes were obviously up-regulated. While, the level of αr was obviously down-regulated in female and male zebrafishes. Thus, the obtained data uncovered that long-term exposure of CuO NPs with low dose could trigger the endocrine disorder, resulting in the disturbance of E2 and T level, inhibition of gonad development, and alteration of HPG axis genes. In brief, this study enriched the toxicological data of NPs on aquatic vertebrates and provided the theoretical support for assessing the environmental safety of NPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.