Abstract

ABSTRACTAnalysis of water and sediments from deep and shallow environments in lakes located 6–154 km east or southeast of the smelters at Sudbury, Ontario (Canada) revealed variable, interactive effects of copper, nickel, and sulfate from smelter fallout on lacustrine microfloras. Metal species in sediments were differentiated by sequential extractions, and the nature, abundances, and activities of microbial populations were represented by chlorophyll-a in water and by CO2 production, fatty acids, phospholipids, dehydrogenase, alkaline phosphatase, and spectral properties of humic matter in sediments. Smelter fallout declined logarithmically with distance from the smelters, and its effects on microfloras depended on the type of microorganism or microbial process and on environmental factors and the abundances of metal species and detoxifying agents. Extractable copper and nickel had toxic effects, which were not attributable solely to the exchangeable fractions, but in certain cases nickel counteracted copper toxicity. Sedimentary sulfide as a whole or sulfide produced by bacterial sulfate reduction, or low oxidation–reduction potential regardless of sulfide concentration, ameliorated metal toxicity by making the metals less bioavailable; and toxicity showed a “quantum jump” when detoxifying agents fell below certain critical concentrations, implying the existence of threshold levels of bioavailable metals above which toxicity increased abruptly. In some cases metal toxicity was lowest in the lakes closest to the smelters (because sulfate concentrations were highest) as well as in the lakes furthest away, and was highest at intermediate distances. The results also suggest that nickel pollution led to ecological succession whereby nickel-tolerant microbial populations replaced nickel-sensitive ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call