Abstract

There are currently few studies on the dual effects of metal ions on the sorption of atrazine and conversely of atrazine on metal adsorption on multiwalled carbon nanotubes (MWCNTs). While a number of sorption models were considered to describe the sorption of atrazine on MWCNTs, the Polanyi-Manes model (PMM) fit the sorption isotherms well with the lowest mean weighted square errors. Atrazine was mainly adsorbed onto the surface and micropores of MWCNTs bundles or aggregates. Hydrogen bonding between azo and amino nitrogen of atrazine and functional groups on MWCNTs also occurred. Oxygenated functionalities, mainly carboxylic groups on MWCNTs surface, decreased the sorption of atrazine. Metal cations Cu2+, Pb2+, and Cd2+ diminished the sorption of atrazine depending on the oxygenated functionalities densities. The mechanisms ascribed were due to the formation of surface or inner-sphere complexes of Cu2+, Pb2+, and Cd2+ through carboxylic groups and hydration, which may occupy part of the surface of MWCNTs-O. The large hydration shell of metal cations may intrude or shield the hydrophobic and hydrophilic sites and indirectly compete with atrazine for surface sites, leading to the inhibition of atrazine adsorption around the metal-complexed moieties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call