Abstract
Cooperative ionic motion is identified as a key physical effect influencing the programming kinetics of Ag/GeS2/W conductive-bridge memory cells. Cooperative effects are suggested to cause the time required to program virgin cells to: (i) deviate from the exponential voltage dependence typically observed at high voltage if the GeS2 is very thin and (ii) increase dramatically at low voltage when programmed with a pulse train having a low duty cycle. A previously reported model is shown to account for both phenomena, and a kinetic Monte Carlo algorithm is described for making quantitative calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.