Abstract

The effects of stabilization annealing and cooling rate on high cycle fatigue (HCF) and fatigue crack propagation (FCP) behaviors of β-processed Ti64 alloys were examined. After β-process heating above β transus, two different cooling rates of air cooling (β-annealing) and water quenching (β-quenching) were utilized. Selected specimens were then underwent stabilization annealing. The tensile tests, HCF and FCP tests on conducted on the β-processed Ti64 specimens with and without stabilization annealing. No notable microstructural and mechanical changes with stabilization annealing was observed for the β-annealed Ti64 alloys. However, significant effect of stabilization annealing was found on the FCP behavior of β-quenched Ti64 alloys, which appeared to be related to the built-up of residual stress after quenching. The mechanical behavior of β-processed Ti64 alloys with and with stabilization annealing was discussed based on the micrographic examination, including crack growth path and crack nucleation site, and fractographic analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.