Abstract

Convex transverse curvature effects in wall-bounded turbulent flows are significant if the boundary-layer thickness is large compared to the radius of curvature (large γ = δ/a). The curvature affects the inner part of the flow if a+, the cylinder radius in wall units, is small.Two direct numerical simulations of a model problem approximating axial flow boundary layers on long cylinders were performed for γ = 5 (a+ ≈ 43) and γ = 11 (a+ ≈ 21). Statistical and structural data were extracted from the computed flow fields. The effects of the transverse curvature were identified by comparing the present results with those of the plane channel simulation of Kim, Moin & Moser (1987), performed at a similar Reynolds number. As the curvature increases, the skin friction increases, the slope of the logarithmic region decreases and turbulence intensities are reduced. Several turbulence statistics are found to scale with a curvature dependent velocity scale derived from the mean momentum equation. Near the wall, the flow is more anisotropic than in the plane channel with a larger percentage of the turbulent kinetic energy resulting from the streamwise velocity fluctuations. As the curvature increases, regions of strong normal vorticity develop near the wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.