Abstract

Myasthenia gravis (MG) induces a reduction of transient evoked otoacoustic emissions (TEOAEs) and distortion product otoacoustic emissions (DPOAEs) that reverses partially after administration of an acetylcholinesterase (AChE) inhibitor. In normal subjects a contralateral acoustic stimulation (CAS) produces an amplitude reduction of TEOAEs and DPOAEs. This effect, called contralateral suppression (CS), is mediated by the efferent auditory system. Twenty subjects affected by MG underwent DPOAE recording with and without contralateral white noise in a drug-free baseline period (‘basal’) and 1 h (‘post’) after administration of a reversible AChE inhibitor. In ‘basal’ condition CAS did not induce significant DPOAE amplitude changes but a paradoxical slight increase was observed. After drug administration, CAS produced a significant decrease of DPOAE amplitudes for middle frequencies ( f 2 between 1306 and 2600 Hz). In normal controls CAS caused a significant decrease ( P<0.001) for all frequencies. The amount of CS in controls and in the MG ‘post’ condition was not significantly different. The increased acetylcholine (ACh) availability following drug consumption seems to partially restore outer hair cell function and enhances their electromotility; a further influx of ACh due to CAS yields to restoration of the CS. These findings also suggest that DPOAEs may be useful in the diagnosis of MG and for monitoring the effectiveness of treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call