Abstract

Feedback plays a crucial role for using brain computer interface systems. This paper proposes the use of vibration-evoked kinaesthetic illusions as part of a novel multisensory feedback for a motor imagery (MI)-based BCI and investigates its contributions in terms of BCI performance and electroencephalographic (EEG) correlates. sixteen subjects performed two different right arm MI-BCI sessions: with the visual feedback only and with both visual and vibration-evoked kinaesthetic feedback, conveyed by the stimulation of the biceps brachi tendon. In both conditions, the sensory feedback was driven by the MI-BCI. The rich and more natural multisensory feedback was expected to facilitate the execution of MI, and thus to improve the performance of the BCI. The EEG correlates of the proposed feedback were also investigated with and without the performing of MI. the contribution of vibration-evoked kinaesthetic feedback led to statistically higher BCI performance (Anova, F(1,14) = 18.1, p < .01) and more stable EEG event-related-desynchronization. Obtained results suggest promising application of the proposed method in neuro-rehabilitation scenarios: the advantage of an improved usability could make the MI-BCIs more applicable for those patients having difficulties in performing kinaesthetic imagery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.