Abstract

ABSTRACTA glass-based waste form used for the immobilization of high-level nuclear wastes should exhibit good resistance to aqueous corrosion since typically this is the primary process by which radionucleides could be released into the environment upon failure of other barriers. In the USA, the Waste Acceptance Product Specifications (WAPS) provides a set of requirements to ensure the consistency of the waste forms produced and specifies the Product Consistency Test (PCT) as a measure of relative chemical durability. While the PCT procedure permits usage of both Teflon and stainless steel vessels for testing of simulated development glasses, Teflon is not permitted for testing of production glasses due to radiative degradation. The results presented in this paper indicate that there are very significant differences between tests conducted in the two types of vessels due to the well-known permeability of Teflon to atmospheric carbon dioxide which results in lowering of the solution pH and a consequent reduction in the leach rate of silicate glasses. A wide range of nuclear waste glass compositions was subjected to the PCT procedure using both Teflon and stainless steel vessels. The magnitude of the effect (up to a factor of four for B, Na, Li concentrations) depends strongly on glass composition, therefore the isolated checks performed previously were inconclusive. The permeability to CO2 of two types of Teflon vessels specified in the PCT procedure was directly measured using buffer solutions: ingress of CO2 is linear in time, strongly pH-dependent, and was as high as 100 ppm after 7 days. In actual PCT tests in Teflon vessels, the total CO2 content was 560 ppm after 87 days and 1930 ppm after one year.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call