Abstract
In this paper, the icephobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions using a closed-loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating aluminum and steel substrate plates with nano-structured hydrophobic particles. The superhydrophobic plates, along with uncoated controls, were exposed to a wind tunnel air flow of 12 m/s and −7 °C with deviations of ±1 m/s and ±2.5 °C, respectively, containing micrometer-sized (∼50 μm in diameter) water droplets. The ice formation and accretion were observed by CCD cameras. Results show that the superhydrophobic coatings significantly delay ice formation and accretion even under the dynamic flow condition of highly energetic impingement of accelerated supercooled water droplets. It is found that there is a time scale for this phenomenon (delay in ice formation) which has a clear correlation with contact angle hysteresis and the length scale of the surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finest surface roughness. The results suggest that the key for designing icephobic surfaces under the hydrodynamic pressure of impinging droplets is to retain a non-wetting superhydrophobic state with low contact angle hysteresis, rather than to only have a high apparent contact angle (conventionally referred to as a “static” contact angle).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.