Abstract

The sun provides a cheap and abundant source of clean and renewable energy. Solar cells have been used to capture this energy and generate electricity. A more useful form of the solar cell would be asphalt pavements, which get heated up by solar radiation. Graphite powders are utilized as thermal conductive fillers to make an asphalt collector conductive so as to improve the efficiency of the asphalt collector. Accounting for the important application conditions and evaluating the effects of the heat conductive materials and the solar energy absorbability of the conductive asphalt collector, a finite element model has been developed to predict temperature distributions in the conductive asphalt solar collector. In this study, an experimental validation exercise was conducted using the measured data taken from full-depth asphalt slabs. Validation results showed that the model can satisfactorily predict the temperature distributions in asphalt concrete slabs. The optimal depth is 25–50 mm for placing pipes that serve as the heat exchanger. Meanwhile, the effect of the surroundings on the solar energy potential of the asphalt collector was noticeable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.