Abstract

Lithium-ion batteries have received much attention for their potential use in electric vehicles (EV's) and portable electronic devices. Fabrication of lithium ion (Li-ion) batteries via ecologically sound (green) processes is also of great interest. Typically, in the production of cathode electrodes, organic solvents such as N-methyl-pyrrolidone (NMP) are used, but these chemicals are toxic. Water-based processing of LiNi0.6Mn0.2Co0.2O2 (NMC) for manufacturing cathode electrodes can provide a more environmental friendly option. In this work, water soluble styrene butadiene copolymer (SBR) and carboxymethyl cellulose (CMC) are used as binders. The active material ratio was set at 90%. The electrochemical performance of water-based NMC electrodes is examined. Additionally, various conductive agents were considered including acetylene black (A) and graphite (B). The particle sizes of conductive agent affect the electrochemical performance of the batteries. Our results show that replacing the conventional organic solvent-based manufacturing route for NMC cathodes with a water-based process is a promising way to fabricate Li-ion batteries with comparable electrochemical behavior, while avoiding toxic process materials and simultaneously reducing the overall manufacturing costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.