Abstract
Abstract Concentrated sodium lignosulfonate (NaLS) solutions have wide industrial applications. Therefore, the viscoelastic properties of NaLS in concentrations of 55%–63% have been investigated between 5°C and 55°C by means of a dynamic rheological technique, namely, the oscillatory rheological experiments were conducted in a rheometer in the small amplitude oscillatory mode. All solutions showed “shear-thinning” behavior over frequency. The complex viscosity (η*) increased and the loss tangent (tanδ) decreased with increasing concentrations. Both the storage modulus (G′) and the loss modulus (G″) increased with increasing frequencies and concentrations. The change in viscoelastic behavior was probably caused by stronger aggregation effects. However, the effects of temperature on the viscoelastic properties are more complex. For 60% NaLS, G′, G″, and η* decreased, but tanδ increased with increasing temperatures. When the temperature exceeded 20°C, G′, G″, and η* increased, but tanδ decreased, and the relaxation times were increased as a function of temperature. The change in viscoelasticity as a function of temperature may also be related to intermolecular aggregation and the swelling of aggregates. The conductivity experiments indicated that the formation of a greater strength of network structures at higher levels of concentrations between 55% and 63% and temperatures between 20°C and 55°C was probably responsible for elasticity enhancement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.