Abstract

Compression molding was carried out to enhance the meltability of uranium dendrites. Uranium dendrites were successfully compressed, increasing their bulk density more than 9 times from 1.1 to 10 g/cm3. The average bulk density was about 8.7 g/cm3 which was almost half of the material density. The compressed dendrites were favorably melted at a temperature of 1,400 °C in an induction furnace. 3 kg of the compressed dendrites were consolidated into an ingot form, showing 96.7 % yield. About 3 % of dross was formed during the melting test in the form of fine powder which was characterized as a uranium oxide. This compression molding method was compared to the supplemental charge method in which uranium dendrites were poured into a molten metal pool produced from a uranium ingot. The capacity of dendrite melting was higher in the compression molding method than in the supplemental charge method. We consider that the higher capacity can be attributed to enhanced thermal conductivity as the bulk density was increased by the compression. These results suggest the high feasibility of the compression molding method for uranium melting in a pyroprocess at an engineering scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.