Abstract

Microstructures of melt-spun Ni–Al alloys with compositions from 61–85 at% Ni were studied by means of transmission electron microscopy, X-ray diffraction analysis and optical microscopy. The microstructures of as-quenched ribbons exposed to cooling rates of the order of 106 K s-1 reflect the transition from primary β-NiAl to γ-Ni solidification with increasing nickel content. In 70 at% Ni alloy ribbons, martensitic NiAl grains were detected near the wheel-side surface contrasting with anomalous and lamellar eutectic microstructure in the top part. Directly ordered Ni3Al grains with single (or large) antiphase domains (APDs) and a minor eutectic fraction were observed in 75 at% Ni alloy ribbons. Samples containing 80 at% Ni exhibit mainly single-phase Ni3Al grains with 10–20 nm sized APDs indicating sequential ordering. Weak L12 ordering was even detected in 85 at% Ni ribbons which displayed ordered antiphase zones of 1 nm size. Disordered γ-(Ni) films on grain boundaries can be discounted for 80 at% Ni ribbons, but occurred near the top of 85 at% Ni samples. The results are explained in terms of the reassessed Ni–Al phase diagram employing recent corrections near to the Ni3Al composition and new results on phase formation in undercooled Ni–Al melts. © 1998 Kluwer Academic Publishers

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.