Abstract

AbstractSingle‐crystalline Cu2ZnSnSe4 (CZTSe) solar cells with open circuit voltages reaching 500 mV are achieved through a combination of composition control and a low‐temperature thermal ordering treatment. A comparison of the device results for Cu‐poor CZTSe with Cu/Zn + Sn ratios of 0.77 and 0.86 is presented with and without the implementation of a 130°C absorber annealing treatment. An increase in bandgap energy is observed via external quantum efficiency measurements with both the decrease in Cu content and the implementation of the order anneal, the latter of which also leads to a decrease in Urbach energy. Defect characterization performed with admittance spectroscopy on devices is demonstrated as insufficient because of low‐temperature current barriers. Photoluminescence (PL) on crystal surfaces however enables a qualitative comparison of the defect landscape between crystal compositions and annealing treatments. Both a highly compensated and a lightly doped defect model are used to fit PL as a function of laser fluence to identify defects contributing to each observed recombination channel. The PL signatures attributed to the ZnSn defect become unresolvable with a decrease in Cu/Zn + Sn ratio from 0.86 to 0.77. Furthermore, a decrease in Cu–Zn disorder is observed upon the implementation of the annealing treatment through both a comparison of potential fluctuation depths and of both PL models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call