Abstract

AbstractThe effects of compatibility of tackifier with polymer matrix and mixing weight ratio of triblock/diblock copolymers as the matrix on the adhesion property and phase structure of tackifier‐added polystryrene triblock/diblock copolymer blends were investigated. For this purpose, polystyrene‐block‐polyisoprene‐block‐polystyrene triblock and polystyrene‐block‐polyisoprene diblock copolymers were used and the diblock weight ratio in the blend was varied from 0 to 1. Spherical polystyrene domains with a mean size of about 20 nm were dispersed in the polyisoprene (PI) continuous phase. In the case of the hydrogenated cycloaliphatic resin as tackifier having a good compatibility with PI and a poor compatibility with polystyrene, the peel strength increased with an increase of the tackifier content, and the degree of increase became significant above 40 wt % of tackifier. It was found that the nanometer‐sized agglomerates of tackifier in the PI matrix were formed and the distance between the nearest neighbors of agglomerates was about 15 nm from SAXS measurement. The peel strength increased with an increase of the nanometer‐sized agglomerates of tackifier from TEM observation. On the other hand, in the case of the rosin phenolic resin as tackifier having a good compatibility with both polystyrene and PI, the peel strength increased effectively at the lower tackifier content, while no significant increase at higher tackifier content was observed. The agglomerates of tackifier were never confirmed in this system. The higher peel strength was obtained at the diblock weight ratio in the blend of 0.5–0.7 for both tackifier‐added systems. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.