Abstract

The cell contents are encapsulated within a compartment, the volume of which is a fundamental physical parameter that may affect intracompartmental reactions. However, there have been few studies to elucidate whether and how volume changes alone can affect the reaction kinetics. It is difficult to address these questions in vivo, because forced cell volume changes, e.g., by osmotic inflation/deflation, globally alters the internal state. Here, we prepared artificial cell-like compartments with different volumes but with identical constituents, which is not possible with living cells, and synthesized two tetrameric enzymes, β-glucuronidase (GUS) and β-galactosidase (GAL), by cell-free protein synthesis. Tetrameric GUS but not GAL was synthesized more quickly in smaller compartments. The difference between the two was dependent on the rate-limiting step and the reaction order. The observed acceleration mechanism would be applicable to living cells as multimeric protein synthesis in a microcompartment is ubiquitous in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.