Abstract
A broad variety of e-liquids are used by e-cigarette consumers. Additives to the e-liquid carrier solvents, propylene glycol and glycerol, often include flavorants and nicotine at various concentrations. Flavorants in general have been reported to increase toxicant formation in e-cigarette aerosols, yet there is still much that remains unknown about the effects of flavorants, nicotine, and flavorants + nicotine on harmful and potentially harmful constituents (HPHCs) when aerosolizing e-liquids. Common flavorants benzaldehyde, vanillin, benzyl alcohol, and trans-cinnamaldehyde have been identified as some of the most concentrated flavorants in some commercial e-liquids, yet there is limited information on their effects on HPHC formation. E-liquids containing flavorants + nicotine are also common, but the specific effects of flavorants + nicotine on toxicant formation remain understudied. We used 1H NMR spectroscopy to evaluate HPHCs and herein report that benzaldehyde, vanillin, benzyl alcohol, trans-cinnamaldehyde, and mixtures of these flavorants significantly increased toxicant formation produced during e-liquid aerosolization compared to unflavored e-liquids. However, e-liquids aerosolized with flavorants + nicotine decreased the HPHCs for benzaldehyde, vanillin, benzyl alcohol, and a "flavorant mixture" but increased the HPHCs for e-liquids containing trans-cinnamaldehyde compared to e-liquids with flavorants and no nicotine. We determined how nicotine affects the production of HPHCs from e-liquids with flavorant + nicotine versus flavorant, herein referred to as the "nicotine degradation factor". Benzaldehyde, vanillin, benzyl alcohol, and a "flavorant mixture" with nicotine showed lower HPHC levels, having nicotine degradation factors <1 for acetaldehyde, acrolein, and total formaldehyde. HPHC formation was most inhibited in e-liquids containing vanillin + nicotine, with a degradation factor of ∼0.5, while trans-cinnamaldehyde gave more HPHC formation when nicotine was present, with a degradation factor of ∼2.5 under the conditions studied. Thus, the effects of flavorant molecules and nicotine are complex and warrant further studies on their impacts in other e-liquid formulations as well as with more devices and heating element types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.