Abstract

Biomass burning has been known as one of main sources of Brown Carbon (BrC) in atmosphere. In this study, by controlling the combustion temperature at 250°C, 350°C, and 450°C, the methanol soluble organic carbon (MSOC) and methanol insoluble carbon (MISC) from pine wood burning was collected by impinger. UV–Vis, excitation emission matrix (EEM), TEM and FTIR spectra were applied to investigate the properties of BrC collected. For MSOC at 250°C and 350°C, all the spectral profiles of UV–Vis absorption and excitation emission matrix are almost the same, while the EEM of MSOC at 450°C are different from that of the other two. For MISC fluorescence was observed only in the case of 450°C. In the FTIR spectra, with the temperature increasing the peaks associated to the oxygen-contained functions was weakened, indicating the formation of the fluorophores with larger conjugated system, especially aromatic hydrocarbons. Our results show that biomass combustion at low temperature produces more oxygen-riched BrC, which possesses relatively lower light absorption, while at high temperature produces more aromatics hydrocarbons with relatively strong light absorption. The results of this work are helpful to trace the source of brown carbon and optimize biomass energy utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call