Abstract

Variation in polychlorinated dibenzo- p-dioxin and polychlorinated dibenzofuran (PCDD and PCDF) homologue profiles from a pilot scale (0.6 MW t, 2×10 6 Btu/h), co-fired-fuel [densified refuse derived fuel (dRDF) and high-sulfur Illinois coal] combustion system was used to provide insights into effects of combustion parameters on PCDD and PCDF pollutant formation. A 24-run, statistically designed test matrix varied dRDF and/or coal firing rates (at a constant targeted energy release rate) along with a range of process variables including calcium hydroxide injection, hydrogen chloride (HCl) concentration, flue gas temperature, quench, and residence time such that the results would be relatable to a wide variety of combustion conditions. Statistical analysis of the molar homologue profiles enabled interpretation based on non-confounding variables. A multivariate, generalized additive model, based on transformations of the design variables, described 83% of the variation of the profiles characterized by log ratios of the homologue molar concentrations. This method identifies the operating parameters that are most significant in determining the PCDD/F homologue profiles. The model can be exercised to predict homologue profiles through input of these system-specific operating parameters. For example, both higher HCl and sulfur dioxide concentrations favor higher relative formation of the lower chlorinated PCDF homologues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.