Abstract
Freshwater ecosystems are characterised by the co-occurrence of stressors that simultaneously affect the biota. Among these, flow intermittency and chemical pollution severely impair the diversity and functioning of streambed bacterial communities. Using an artificial streams mesocosm facility, this study examined how desiccation and pollution caused by emerging contaminants affect the composition of stream biofilm bacterial communities, their metabolic profiles, and interactions with their environment. Through an integrative analysis of the composition of biofilm communities, characterization of their metabolome and composition of the dissolved organic matter, we found strong genotype-to-phenotype interconnections. The strongest correlation was found between the composition and metabolism of the bacterial community, both of which were influenced by incubation time and desiccation. Unexpectedly, no effect of the emerging contaminants was observed, which was due to the low concentration of the emerging contaminants and the dominant impact of desiccation. However, biofilm bacterial communities modified the chemical composition of their environment under the effect of pollution. Considering the tentatively identified classes of metabolites, we hypothesised that the biofilm response to desiccation was mainly intracellular while the response to chemical pollution was extracellular. The present study demonstrates that metabolite and dissolved organic matter profiling may be effectively integrated with compositional analysis of stream biofilm communities to yield a more complete picture of changes in response to stressors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.