Abstract
The objective of this study was to evaluate the effects of the combined use of light irradiation (LIR, halogen light, or LED/diode laser) and 35% hydrogen peroxide (35%HP) on human enamel mineral content. The use of high-intensity light has been indicated for acceleration of the rate of chemical bleaching; however, it is not known whether LIR can promote additional effects on enamel surfaces during the bleaching. One hundred enamel samples were obtained from third molars and randomly divided into 10 groups (n = 10). The control group (CG) remained untreated. Three whitening products were used: Whiteness HP Maxx, Pola Office, and Opalescence Xtra. Bleaching consisted of one session, and the products were applied three times to each specimen for 10 min each. The products were subjected, or not, to LIR during treatment with halogen light or LED/diode laser. The mineral concentration of enamel was determined before and after treatments using an FT-Raman spectroscope (FT-RS), and the amount of calcium lost from the bleached enamel surfaces was quantified with an atomic absorption spectrometer (AAS). FT-RS results showed a decreased mineral content after all treatments, with the exception of Pola Office when irradiated with LED/diode laser and the CG. The losses of calcium detected for Pola Office and Opalescence Xtra were similar for the three situations (without or with light irradiations), whereas for Whiteness HP Maxx the lowest calcium loss was detected without LIR. Most of the bleaching treatments investigated, in combination with LIR or not, can reduce the mineral content of enamel surface. LIR increased the calcium loss for Whiteness HP Maxx; no effects were observed for Pola Office and Opalescence Xtra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.