Abstract

The combination technique of pre-ozonation and bioaugmentation is promising for remediating benzo[a]pyrene (BaP)-contaminated soil. However, little is known about the effect of coupling remediation on the soil biotoxicity, soil respiration, enzyme activity, microbial community structure, and microbial in the process of remediation. This study developed two coupling remediation strategies (pre-ozonation coupled with bioaugmentation by addition of polycyclic aromatic hydrocarbons (PAHs) specific degrading bacteria or activated sludge), compared with sole ozonation and sole bioaugmentation, to improve degradation of BaP and recovery of soil microbial activity and community structure. Results showed that the higher removal efficiency of BaP (92.69-93.19%) was found in coupling remediation, compared with sole bioaugmentation (17.71-23.28%). Meanwhile, coupling remediation significantly reduced the soil biological toxicity, promoted the rebound of microbial counts and activity, and recovered the species numbers and microbial community diversity, compared with sole ozonation and sole bioaugmentation. Besides, it was feasible to replace microbial screening with activated sludge, and coupling remediation by addition of activated sludge was more conducive to the recovery of soil microbial communities and diversity. This work provides a strategy of pre-ozonation coupled with bioaugmentation to further degrade BaP in soil by promoting the rebound of microbial counts and activity, as well as the recovery of species numbers and microbial community diversity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call