Abstract

Hypertension and dyslipidemia frequently coexist in patients with progressive insulin resistance and thus constitute metabolic syndrome. We sought to determine the merits of combining an angiotensin II receptor blocker and a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor in treating this pathological condition. Five-week-old Otsuka Long-Evans Tokushima Fatty rats, a model of metabolic syndrome, were untreated or treated with olmesartan 3 mg kg(-1) per day, pravastatin 30 mg kg(-1) per day or their combination for 25 weeks. Long-Evans Tokushima Otsuka rats served as normal controls. The antihypertensive effect of olmesartan and the lipid-lowering properties of pravastatin were both augmented by the combination. The oral glucose tolerance test revealed that only the combined treatment significantly reduced the area under the time-glucose curve, which was accompanied by augmented adiponectin messenger RNA expression in epididymal adipose tissue. Although the total cardiac endothelial nitric oxide synthetase (eNOS) content did not significantly differ among the groups, the combined treatment significantly increased the content of dihydrofolate reductase, a key eNOS coupler. Dihydroethidium staining of the aorta showed that the combination most significantly attenuated superoxide production. Moreover, Azan-Mallory staining revealed that the combination most significantly limited the perivascular fibrosis and wall thickening of intramyocardial coronary arteries. In conclusion, the combination of olmesartan and pravastatin augmented adiponectin expression in white adipose tissue and improved glucose tolerance in a rat model of metabolic syndrome, which was associated with more significant ameliorations of cardiovascular redox state and remodeling than those by treatments with either agent alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.