Abstract

Combined multiaxial forging (MAF) and rolling was performed on Cu-3% Ti (wt%) alloy at room temperature with emphasis on microstructural evolution, improvement in mechanical properties, and corrosion resistance. Microstructural changes were confirmed from various characterization techniques, and co-related with mechanical properties. TEM analysis revealed high shear band density in the 3 pass MAF + 90% rolled sample appearing due to high strain. EBSD analysis revealed transformation to low angle grain boundaries from high angle grain boundaries. Maximum microhardness and UTS reached to 340 HV and 960 MPa, respectively in the processed samples. Significant grain refinement was observed in MAF processed Cu-3%Ti alloy, and after combined MAF + rolling, higher dislocation density and refinement of shear bands were observed. In addition, potentio-dynamic polarization test was used to study the corrosion behavior of the alloy. Scanning electron microscope (SEM) was used to analyze the corroded surface morphology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.