Abstract

Infection of human immunodeficiency virus (HIV) is determined through the decay of healthy CD4+ T-cells in a well-mixed compartment, such as a bloodstream. A mathematical model is considered to illustrate the effects of combined drug therapy, i.e. reverse transcription plus protease inhibitor, on viral growth and T-cell population dynamics. This model is used to explain the existence and stability of infected and uninfected steady states in HIV growth. An analytical technique, called variational iteration method (VIM), is used to solve the mathematical model. This method is modified to obtain the rapidly convergent successive approximations of the exact solution. These approximations are obtained without any restrictions or the transformations that may change the physical behavior of the problem. Numerical simulations are computed and exhibited to illustrate the effects of proposed drug therapy on the growth or decay of infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.