Abstract

Food contains bioactive compounds that may prevent changes in gut microbiota associated with Westernized diets. The aim of this study is to explore the possible additive effects of d-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on gut microbiota and related risk factors during early stages in the development of fat-induced pre-diabetes. Male Sprague Dawley (SD) rats were fed a standard diet, or a high-fat (HF) diet supplemented with d-fagomine, EPA/DHA 1:1, a combination of both, or neither, for 24 weeks. The variables measured were fasting glucose and glucose tolerance, plasma insulin, liver inflammation, fecal/cecal gut bacterial subgroups and short-chain fatty acids (SCFAs). The animals supplemented with d-fagomine alone and in combination with ω-3 PUFAs accumulated less fat than those in the non-supplemented HF group and those given only ω-3 PUFAs. The combined supplements attenuated the high-fat-induced incipient insulin resistance (IR), and liver inflammation, while increasing the cecal content, the Bacteroidetes:Firmicutes ratio and the populations of Bifidobacteriales. The functional effects of the combination of d-fagomine and EPA/DHA 1:1 against gut dysbiosis and the very early metabolic alterations induced by a high-fat diet are mainly those of d-fagomine complemented by the anti-inflammatory action of ω-3 PUFAs.

Highlights

  • Food contains bioactive compounds that may prevent changes in gut microbiota associated with Westernized diets

  • Insulin resistance (IR) and impaired glucose tolerance (IGT), which appear in the first stage of diet-induced type 2 diabetes[4], might be triggered by intestinal barrier alterations induced by unbalanced microbiota[5]

  • The present study examines the effects of the combination of d-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on Sprague Dawley (SD) rats at a very early stage in the development of fat-induced pre-diabetes

Read more

Summary

Introduction

Food contains bioactive compounds that may prevent changes in gut microbiota associated with Westernized diets. The aim of this study is to explore the possible additive effects of d-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on gut microbiota and related risk factors during early stages in the development of fat-induced pre-diabetes. A high intake of fat and protein is positively associated with Bacteroides; whereas a high fiber intake is related to increased levels of Prevotella[8,9] Food components such as prebiotic fiber may prevent changes in gut microbiota associated with obesity and metabolic disorders[2]. The aim of this study is to explore the possible complementary or additive effects of d-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on gut microbiota and risk factors for diabetes during early stages in the development of fat-induced pre-diabetes in rats

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call