Abstract

The transverse seismic responses of continuous 4-span bridges designed based on the 2006 Canadian Highway Bridge Design Code were studied using inelastic time history analyses. A total of 648 bridge configurations were considered in which the column heights, column diameters, superstructure stiffness and mass as well as abutment restraint conditions were studied. The maximum ductility demands obtained using elastic and inelastic analyses were compared to study the influence of the degree of irregularity. The effects of column stiffness ratios and superstructure to substructure stiffness ratios on the maximum ductility demands and concentration of ductility demands were investigated. A number of different regularity indices were compared to determine the suitability of these different indices in predicting the influence of irregularity. This study demonstrates the conservative nature of the 2006 Canadian Highway Bridge Design Code and provides some guidance on factors for determining the degree of irregularity and suitable regularity indices when carrying out nonlinear dynamic analyses of bridges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call