Abstract
Interactions between cells and the extracellular matrix (ECM) play essential roles in modulating cell behavior during development and disease. The myocardial ECM is composed predominantly of interstitial collagen type I and type III. The composition, organization, and accumulation of these collagens are altered concurrent with cardiovascular development and disease. Changes in these parameters are thought to play significant roles in myocardial function. While a number of studies have examined how changes in the ECM affect myocardial function as a whole, much less is known regarding the response at the cellular level to changes in the collagenous ECM. Experiments were carried out to determine the effects of alterations in collagen density and ECM stiffness on the behavior of isolated heart fibroblasts. In vitro bioassays were performed to measure the effects of changes in collagen concentration (0.75-1.25 mg/ml) on adhesion, migration, spreading, and gene expression by heart fibroblasts. Increased density of collagen in 3-dimensional gels resulted in more efficient adhesion, spreading, and migration by heart fibroblasts. These experiments indicated that the density of the collagen matrix has a significant impact on fibroblast function. These studies begin to elucidate the effects of ECM density at the cellular level in the myocardium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.